

FREIO-EMBREAGENS HIDRÁULICOS

GOIZPER YOUR PARTNER TRANSMISSION IN POWER TRANSMISSION

NTRODUÇÃO INFORMAÇÕES TÉCNICAS			4
COMBINAÇÕES DE FREIOS-EMBREAGEM HIDRÁULICOS			5
SÉRIE DE FREIOS-EMBREAGEM HIDRÁULICOS			15
Jnidade de freio-embreagem convencional e			
progressiva			21
Jnidade de freio-embreagem convencional e	Série	6.21/6.22	22
orogressiva Unidade de freio-embreagem convencional e	Série	6.23/6.24	22
progressiva Unidade de freio-embreagem convencional e	Série	6.25/6.26	24
progressiva Freio-embreagem convencional com alojamento	Série	6.27/6.28	24
Freio-embreagem progressivos com alojamento Freio-embreagem convencional com alojamento S Freio-embreagem progressivos com alojamento Exemplos de montagem ACESSÓRIOS	Série 6.2 Série 6.2 Série 6.2 Série 6.2	4910 7910	26 26 26 26 28
FREIOS-EMBREGAEM HIDRÁULICOS Embreagens hidráulicas			29
Embreagens hidráulicas Freios hidráulicos de segurança Freios hidráulicos de segurança	Série 6.3 Série 6.12	2 Série 6.11 2	37 38 39 40
QUESTIONÁRIOS DE SELEÇÃO	Série 6.4	2- 6.42 B	41

GOIZPER 2

INTRODUÇÃO

Este catálogo apresenta a linha completa de embreagens hidráulicas, freios, combinações de freios-embreagem, freios de segurança com conjunto de molas e acessórios.

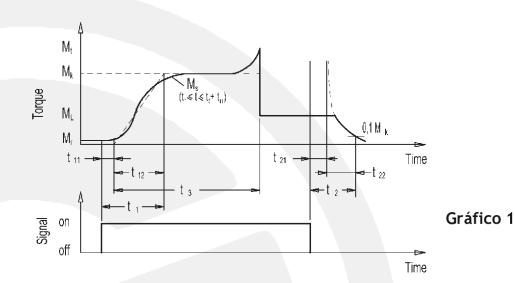
As aplicações incluem prensas para formação de metal, estampagem, gravação e desenho, fabricação de latas, peças automotivas, tesouras e cortadores de molde; transmissões para máquinas e veículos, engenharia marítima, guindastes fixos e móveis e acionamentos multimotores; freio para motores de acionamento hidráulico de rodas de escavadeiras, guindastes, guinchos, tratores agrícolas, freios de segurança para máquinas-ferramenta e servo-prensas e todos os tipos de máquinas acionadas hidraulicamente.

Apresentamos também informações técnicas básicas relacionadas: torques, tempos de reação, desempenho de materiais de atrito, etc.

Este catálogo é apenas uma referência. Não hesite em entrar em contato conosco para obter informações sobre aplicações especiais relacionadas a esses produtos.

INFORMAÇÕES TÉCNICAS

Este capítulo explica os conceitos básicos e as fórmulas para o cálculo e a seleção de freios de embreagem para cada aplicação.


Todas as fórmulas usadas neste catálogo estão de acordo com a norma VDI 2241 e/ou DIN 1304

Para obter mais assistência, entre em contato com nosso departamento técnico.

TERMOS TORQUES

É importante definir e diferenciar os torques considerados no processo de embreagem ou frenagem.

Os valores de torque mostrados no gráfico 1 são definidos abaixo.

Deslizamento ou torque dinâmico M_s : esse é o torque transmitido após o término do tempo de aumento de torque (t_{12}) . Ele muda durante o processo de ciclo e depende, além de outros fatores, da velocidade de deslizamento e da

temperatura das superficies de atrito.

Torque transmissível ou torque estático $\rm M_t$: torque máximo admissível sem deslizamento, dependendo das condições de trabalho e do projeto.

GOIZPER 4 GOIZPE

Torque residual M: torque transmitido quando o sistema não é acionado. Depende da posição de montagem (horizontal, vertical ou inclinada), da velocidade relacionada à superfície do disco, do fluxo de óleo e da viscosidade.

Na montagem vertical ou inclinada, o torque residual aumenta muito e, portanto, o calor gerado também aumenta.

Torque de carga M_L : torque necessário para ativar os elementos da máquina, levando em conta seu desempenho, a velocidade de ação, etc.

Torque característico \mathbf{M}_k : É o torque indicado no catálogo.

Torque de aceleração M_a (torque de desaceleração quando o valor é negativo): torque indicado no catálogo. Geralmente igual ao torque dinâmico.

Esse torque é calculado com a seguinte formulação:

$$M_{a} = \frac{J (n_{10} - n_{20})}{9,56 \cdot t} (Nm)$$

Sendo:

J : momento de inércia (kgm²).

 n_{10} : velocidade do eixo do acionador (r.p.m.).

n₂₀ : velocidade do eixo acionado (r.p.m.).

tempo (s).

M_a : Torque de aceleração (Nm).

COEFICIENTES DE ATRITO

Para calcular diferentes torques, os seguintes coeficientes são considerados.

μ : Coeficiente de deslizamento ou atrito dinâmico.

μ: Coeficiente de atrito estático.

A razão entre os dois coeficientes para diferentes materiais será indicada nos próximos capítulos.

TERMOS DE TEMPO NA TRANSMISSÃO DE TORQUE

Assim como nos torques, é importante definir os diferentes tempos existentes na transmissão de torque que aparecem no gráfico 1, que são:

Atraso de reação t₁₁: tempo desde a ativação do controle até o início do aumento de torque.

Tempo de subida t_{12}: tempo desde o início do aumento do torque até atingir a condição estacionária.

Tempo de ligação \mathbf{t}_1 soma do tempo de atraso da reação e o tempo de subida.

$$t_1 = t_{11} + t_{12}$$

Tempo de deslizamento t₃: tempo de movimento relativo entre as superfícies de atrito de um mecanismo acionado.

Tempo total t_t: Tempo desde o sinal até que a a transmissão de torque seja realizada.

$$t_t = t_{11} + t_3$$

TERMOS DE TEMPO PARA INTERROMPER A TRANSMISSÃO DE TORQUE (GRÁFICO 1)

Definimos os tempos de interrupção da transmissão de torque de maneira semelhante à que fizemos no parágrafo anterior.

Tempo de reação ao interromper a transmissão t₂₁: Tempo desde a desativação do controle até o início da diminuição do torque.

Redução do torque t₂₂: Tempo desde a diminuição do torque até atingir 10% do torque característico.

Tempo de desconexão t₂: Resumo da reação de atraso e o tempo de redução.

$$t_2 = t_{21} + t_{22}$$

OIZPER 6 GOIZPER

MOMENTO DE INÉRCIA J

É importante considerar o momento de inércia "J" antes de fazer os cálculos a seguir.

Por exemplo, o momento de inércia de um cilindro de ferro sólido com 100 mm de espessura e diâmetro externo D (em mm) é obtido com a seguinte formulação:

$$J = 77 \cdot D^4 (kgm^2)$$

Quando o momento de inércia não está referido ao eixo da embreagem, é necessário reduzi-lo a este eixo. A seguinte formulação é usada.

$$J_{red} = J \cdot i^2 (kgm^2)$$

J : momento de inércia das massas do eixo em qualquer velocidade. (kgm²).

J_{red}: momento de inércia reduzido ao eixo da embreagem (kgm²).

i : relação de velocidade entre eixos.

$$i = \frac{n_2}{n_1}$$

n, : velocidade da embragem (r.p.m.).

n₂: velocidade do eixo com inércia J (r.p.m.).

Se as massas a acelerar têm movimento linear, seus momentos de inércia são reduzidos ao eixo da embreagem conforme a seguinte formulação:

$$J_{red} = 91 \cdot m \cdot \frac{v^2}{n^2} \text{ (kgm}^2\text{)}$$

m: massas em movimento linear(kg).

v : velocidade das massas mencionadas (m/s).

J_{red}: momento de inércia reduzido ao eixo da embreagem (kgm²).

CAPACIDADE TÉRMICA

No que diz respeito à transmissão de calor, define-se o seguinte conceito:

Trabalho de engate Q: É a energia causada pelo atrito e transformada em calor, como consequência do engate.

$$Q = \frac{J \cdot (n_{10} \pm n_{20})^2}{182,4 \cdot 10^3} \cdot \frac{M_k}{M_k \pm M_L} (kJ)$$

J : momento de inércia (kgm²).

 $\rm M_{\rm k}~$: torque transmissível (Nm).

M₁: torque de carga (Nm).

n₁₀ : Acionamento de velocidade (min⁻¹).

n₂₀: Acionamento de velocidade (min⁻¹).

O trabalho produzido por cada ciclo, que é transformado em calor, deve ser removido sem ultrapassar a capacidade térmica da embreagem-freio.

Nos freios e embreagens hidráulicas, o calor é dissipado por meio de óleo lubrificante. A lubrificação pode ser feita por respingo, mas quando for necessário um trabalho intenso será necessário um resfriamento forçado, e a lubrificação será feita através da embreagem-freio.

DESEMPENHO DE MATERIAIS DE ATRITO

Dependendo de alguns fatores, que detalhamos a seguir, o coeficiente de atrito pode mudar durante o engate da embreagem ou do freio. Esses fatores também afetam quando o torque é transmitido sem movimento relativo entre as superfícies de atrito:

- Potência transmitida.
- Temperatura nas superfícies de atrito (sistema de refrigeração).
- Velocidade de deslizamento.
- Combinação de materiais de fricção.
- Operação seca ou úmida.
- Projeto das superfícies de atrito (ranhuras...).
- Pressão nas superfícies de atrito.
- Temperatura ambiente.

-

As combinações de materiais utilizados em nossas embreagens-freios são as seguintes:

MEIO DE OPERAÇÃO	COMBINAÇÃO DE MATERIAIS
Seco	Aço, ferro fundido / material orgânico
	Aço temperado / bronze sinterizado
Úmido	Aço temperado / bronze sinterizado

GOIZPER 8 GOIZPER

FREIOS-EMBREAGEM HIDRÁULICOS:

Projetado para operação úmida, usando aço temperado contra bronze sinterizado.

As superfícies de atrito foram projetadas com ranhuras radiais e espirais, levando em consideração (entre outros fatores) a carga térmica, o coeficiente de atrito e o fluxo de óleo de lubrificação.

COEFICIENTE DE ATRITO

Com esta combinação de materiais de atrito, obtém-se a seguinte relação entre o coeficiente de atrito estático e dinâmico:

$$\frac{\mu_0}{\mu} = 1,7$$

DESGASTE DOS DISCOS SINTERIZADOS

O desgaste neste tipo de combinação é muito baixo. É importante garantir a lubrificação adequada das superfícies de atrito e também trocar o óleo regularmente.

CARACTERÍSTICAS TÉRMICAS

Os discos sinterizados possuem uma condutividade térmica muito boa que permite temperaturas de até 350 °C aproximadamente.

Os meios de lubrificação nas superfícies de atrito têm grande influência na dissipação de calor produzida em cada operação. Os valores mais comuns são os seguintes:

Lubrificação por respingos: 0,7-1 J/mm²min Lubrificação forçada: 1-2 J/mm²min

A energia produzida por operação e por unidade de superfície não pode exceder 1-2 J/mm² (VDI 2241).

PROCESSO DE FRENAGEM

Para calcular o tempo de deslizamento durante o engate do freio t_3 , a seguinte fórmula é usada:

$$t_3 = \frac{t_{12}}{2} + k \cdot \frac{J \cdot w}{M_k}$$
 (S)

 t_{12} : Tempo de aumento de torque.

k : Coeficiente de correção.

J : Inércia referida ao eixo da embreagem-freio (kgm²).

w : Velocidade angular da embreagem-freio (rad/s).

M k : Torque de frenagem indicado no catálogo (Nm).

Em embreagem-freios hidráulicos, o valor t₁₂ é curto.

O coeficiente K é função dos fatores indicados no capítulo "desempenho dos materiais de atrito". Seu valor é variável, considerando para cálculo k= 1,25

O tempo total de frenagem será, portanto:

$$t_{t} = t_{11} + t_{3}$$

t₁₁: também é variável.

ÂNGULO DE FRENAGEM $\theta_{ m f}$

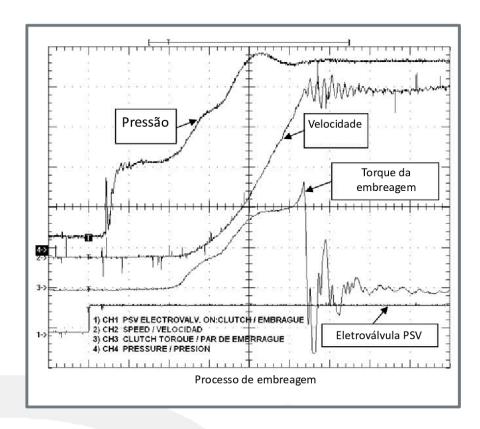
O ângulo de frenagem pode ser dividido em dois termos:

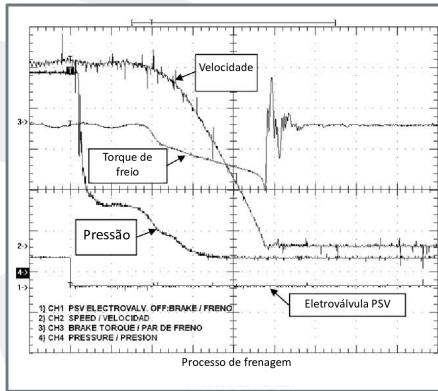
- 1.- Ângulo de reação θ: _r = w t₁₁ θ
- 2.- Ângulo de frenagem mecânica (0,,):

$$\theta_{m} = f (M, J, w, t_{12}, t_{3})$$

 $\theta_{f} = \theta + \theta_{m}$

Para simplificar o cálculo, pode-se utilizar a seguinte formulação:


$$\theta_f = \mathbf{w} \cdot \mathbf{t}_{11} + \frac{\mathbf{w}}{2} \cdot \mathbf{t}_3 \text{ (rad)} \quad \text{ou}$$


$$\theta_f = 6 \cdot \mathbf{n} \cdot \mathbf{t}_{11} + 3 \cdot \mathbf{n} \cdot \mathbf{t}_3 \text{ (°)}$$

n : Velocidade de rotação da embreagem-freio (r.p.m.).

GOIZPER 10 GOIZPER 11

Veja abaixo dois exemplos de medições feitas por um osciloscópio; o primeiro se refere ao engate da embreagem, enquanto o segundo mostra o engate do freio de uma embreagem-freio hidráulico:

CÁLCULO DE TORQUE PARA UMA PRENSA EXCÊNTRICA

Para calcular o torque necessário em uma prensa excêntrica, utiliza-se a seguinte formulação:

$$M = \frac{\sin (\alpha + \beta)}{\cos \beta} \cdot P \cdot r$$

M : torque de giro a ser transmitido pelo eixo excêntrico.

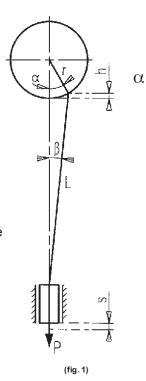
α : ângulo máximo de esforço antes do PMI (ponto morto inferior).

P : força da prensa.

: raio do excêntrico.

ß : ângulo entre a biela
 e a linha de movimento do carro
 no momento de força máxima.

s. : distância do PMI até o ponto onde o esforço máximo é produzido (medido no êmbolo).


h : distância do PMI até o ponto onde a força máxima é produzido (Medido em excêntrico).

Para obter ângulos" a" e "ß", e "h" altura, são utilizadas as seguintes formulações:

Sin
$$\alpha = \sqrt{1 - (\frac{r - h}{r})^2}$$

$$h = \frac{L^2 - (L - s)^2}{2 \cdot (L - s + r)}$$

$$\frac{r}{L} = \frac{\sin \beta}{\sin \alpha}$$

No caso em que os valores de "r" e "L" não são conhecidos, um cálculo estimado sobre o torque transmissível pode ser feito usando a seguinte formulação:

$$M = F \cdot r = \frac{\sin (\alpha + \beta)}{\cos \beta} \cdot P \cdot r = K \cdot P \cdot r$$

Considerando $\frac{L}{r} = 5$ (estimado), o valor K é:

Quando a embreagem está em um eixo mais rápido:

$$M_{red} = \frac{M}{i}$$
 Sendo "i" a relação de transmissão entre o eixo da embreagem e o eixo excêntrico.

GOTZPER 12

COTZDED

FREIOS-EMBREAGEM HIDRÁULICOS COMBINADOS

COTZDED 14

COTZBED

INTRODUÇÃO DOS FREIO-EMBREAGENS HIDRÁULICOS COMBINADOS

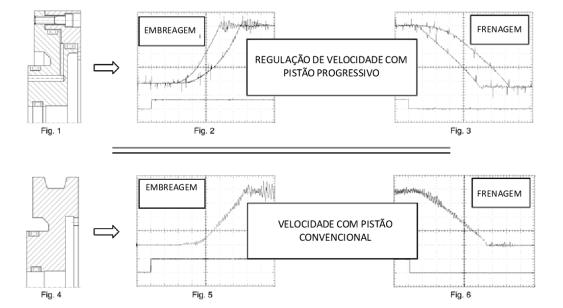
As combinações de freio-embreagens hidráulico são usadas principalmente em prensas mecânicas, tesouras, puncionadeiras e outras aplicações que exigem alto número de golpes por minuto, bem como uma operação precisa de partida/parada. Sua vantagem nessas aplicações se deve às suas operações silenciosas, baixa inércia, economia de energia e manutenção mínima.

As unidades de freio-embreagens hidráulico GOIZPER são normalmente projetadas para operar com pressão nominal de óleo de 60 bar no circuito de acionamento e com sistema de lubrificação forçada (se nenhuma outra especificação for necessária). A principal função do óleo de arrefecimento que passa pelos discos em ambos os lados é absorver e evacuar o calor produzido ali.

É possível aumentar a velocidade, trabalhar em maior velocidade e evitar calor excessivo, aumentando a capacidade de resfriamento. Os fluxos geralmente ficam entre 30 e 80 l/min, dependendo da demanda de calor da aplicação, com pressões entre 5 e 15 bar para compensar a obstrução no circuito de lubrificação, quando o óleo flui através de filtros, tubulações, selo rotativo, conjunto embreagem-freio, trocador de calor...

A capacidade do sistema de arrefecimento principal deve ser pelo menos 15% maior que o calor gerado pelo conjunto embreagem-freio e pelo circuito hidráulico. Em geral, o óleo de retorno que resfria os discos do conjunto embreagem-freio não deve ultrapassar a temperatura de 70°C e no reservatório a temperatura máxima recomendada não deve ultrapassar 65°C.

FREIO-EMBREAGENS PROGRESIVOS


As combinações de freio-embreagens hidráulico são acionadas por um fluido quase incompressível, fornecendo instantaneamente pressão e torque nominais. Assim que o pistão engata, uma pressão uniforme é aplicada instantaneamente nas placas.

A partida rápida pode criar uma carga de choque causando vibração, desgaste de rolamentos, falha de mecanismo, etc.

A Figura 5 mostra um diagrama de velocidade/tempo para a partida de uma unidade de freio-embreagem hidráulica convencional. Como se pode observar, as curvas de engate têm um perfil linear. Neste caso, há um ângulo agudo no ponto inicial, refletindo um engajamento repentino.

A Figura 6 mostra o mesmo efeito para a operação de frenagem.

Para resolver este problema, a GOIZPER desenvolveu (e patenteou) um conjunto freio-embreagem equipado com pistão progressivo, que em combinação com uma válvula, também desenvolvida pela GOIZPER, pode cobrir tanto a embreagem quanto o freio, de acordo com a necessidade de cada aplicação e usuário (fig. 2 e 3).

GOIZPER 16 GOIZPER 17

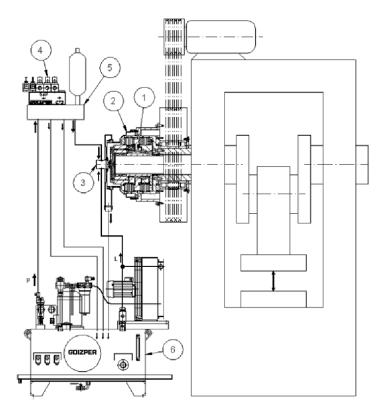
LINHA DE PRODUTOS

Os tamanhos padrão GOIZPER oferecem uma grande variedade de torque operacional. Ao adicionar mais discos, o torque do freio e da embreagem aumenta gradualmente em relação à classificação padrão. O diâmetro externo compacto permanece o mesmo, enquanto o comprimento aumenta ligeiramente.

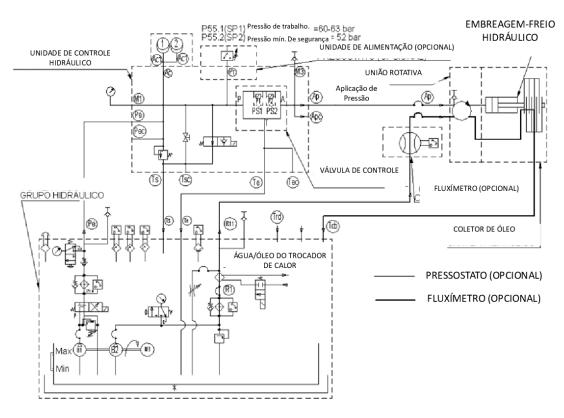
Em todas as condições, as classificações de torque da embreagem são estáticas, em uma condição engatada, e as classificações de torque do freio são dinâmicas, em uma condição de deslizamento.

Além disso, se a aplicação da embreagem-freio em uma unidade específica exigir menos torque de frenagem do que o indicado no catálogo, as molas podem ser eliminadas para que o torque da embreagem selecionada aumente.

A GOIZPER também oferece diferentes soluções para diversas aplicações no campo das prensas, classificadas de acordo com vários parâmetros de aplicação:


- a) Dependendo do sistema de pistão:
- Convencional, para aplicações simples, sem necessidade de regular a suavidade da embreagem e da frenagem.
- Progressivo, juntamente com a válvula GOIZPER para Progressivo, juntamente com a válvula GOIZPER para regulagem de embreagem e frenagem para aplicações que exigem maior controle do engate da embreagem-freio e da transmissão de torque.
- b) Dependendo do tipo de carenagem
- Carenagem dinâmica de design GOIZPER, com as seguintes vantagens:
- · Não há necessidade de perfurar o eixo.
- · Coleta externa de óleo para a prensa.
- Carenagem estática ou dinâmica com outros designs.
- c) Dependendo da montagem:
- Com anel de travamento.
- Com chavetas.
- Na extremidade do eixo.
- Entre o volante e o quadro.
- d) Dependendo da lubrificação:
- Forçada.
- Por respingo.

Por fim, a GOIZPER pode completar sua oferta com o projeto e fabricação de todo o conjunto de periféricos relacionados à freio-embreagem hidráulico, incluindo:


- Coletor de óleo (2).
- União rotativa (3).
- Válvula de controle (4).
- Unidade de controle (5).
- Unidade de alimentação (6).

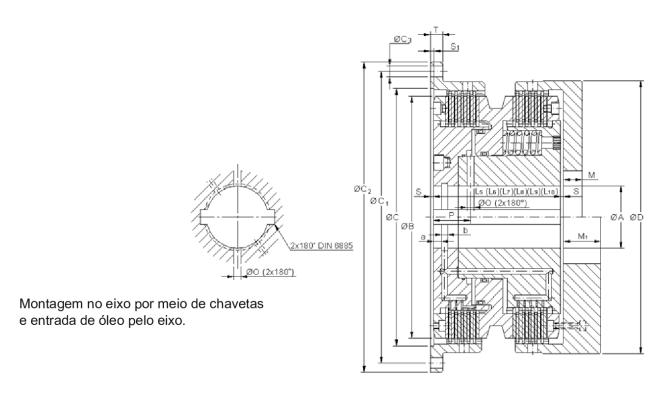
ELEMENTOS FORNECIDOS PELA "GOIZPER"

- 1.-FREIO-EMBREAGEM
- 2.- COLETOR DE ÓLEO
- 3.- UNIÃO ROTATIVA
- 4.- VÁLVULA DE CONTROLE
- 5.- UNIDADE DE CONTROLE
- 6.- UNIDADE DE ALIMENTAÇÃO

EXEMPLO DE CIRCUITO HIDRÁULICO

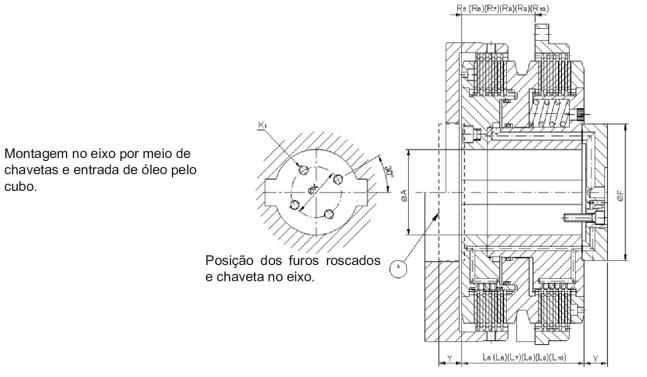
Para dimensionar adequadamente o equipamento, de acordo com os dados operacionais fornecidos pelo cliente, a GOIZPER indicará as vazões de óleo necessárias para cada circuito e as capacidades necessárias do acumulador e do trocador de calor.

GOIZPER 18 _______ GOIZPER 1


SÉRIE DE FREIOS-EMBREAGEM HIDRÁULICOS

COTZBED

GOIZPER b

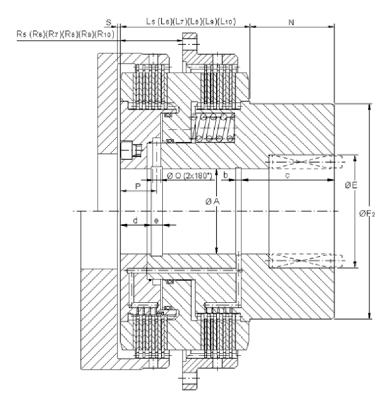

Série 6.21 (Convencional) 6.22 (Progressivo)

Série 6.23 (Convencional) 6.24 (Progressivo)

Montagem no eixo por meio de

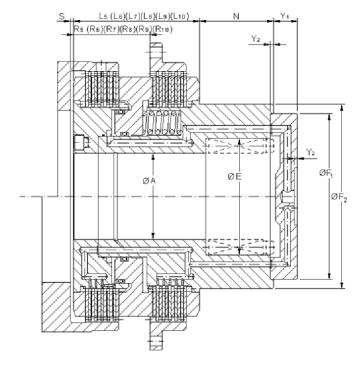
cubo.

(*) Entrada de óleo do lado do freio (opcional)


UNIDADE DE FREIOS-EMBREAGEM HIDRÁULICOS

	SÉR	SÉRIE				6.21	/ 6.22 /	6.23 / 6	.24		
TA	MA	NHO		25	75	77	78	81	82	83	84
			5	2500	6500	12500	25000	50000	100000	200000	328000
			6	3000	7800	15000	30000	60000	120000	240000	391000
Torque	reio	gem	7	3500	9100	17500	35000	70000	140000	280000	456000
de embreag	em/f	Embreagem	8	4000	10400	20000	40000	80000	160000	320000	514000
em	eag	Emk	9	4500	11700	22500	45000	90000	180000	360000	574000
estática (Nm)	Quantidade de discos de embreagem/freio		10	5000	13000	25000	50000	100000	200000	400000	633000
Torque	de 6		5	1000	2500	5000	10000	20000	40000	80000	120000
de	COS	0	6	1200	3000	6000	12000	24000	48000	96000	144000
freio dinâmi	e dis	Freio	7	1400	3500	7000	14000	28000	56000	112000	168000
СО	e de		8	1600	4000	8000	16000	32000	64000	128000	192000
(Nm)	idad		9	1800	4500	9000	18000	36000	72000	144000	216000
	uant		10	2000	5000	10000	20000	40000	80000	160000	240000
J int.	ā	C /	5/5	0,11	0,44	1,13	2,94	7,12	28,5	79,1	203
(kg m²)		О Ш	10/10	0,14	0,55	1,58	4,12	10,58	40	109,7	276
	Peso (Kg)		40	80	160	295	510	1030	1900	3000
Velo	cidade r	máxima	(min ⁻¹)	1700	1300	1000	850	700	500	415	350
	Pressão	(bar)						60			
	Ø H7	mín		58	70	80	105	120	160	180	220
	Ø H7	máx		75	95	115	150	180	250	310	375
	Ø			196	260	320	390	490	630	778	930
	ØС			215	277	350	415	530	670	830	1000
	Ø	C1		245	310	400	470	590	750	930	1115
Ø C2		260	330	425	500	630	800	990	1180		
		12x30 */		9	11	13,5	17,5	22	26	33	36
	Ø			230	290	380	440	560	710	870	1040
	Ø			112	136	175	210	255	340	400	470
	Ø			44	55	65	85	95	130	150	180
		(4x90 ™		M8	M8	M10	M12	M16	M20	M20	M24
	L,			110	135	170	205	230	290	365	416
	L,			120	148	185	225	252	318	398	455
	L			130	161	200	245	274	346	431	494
	L,			140 150	174 187	215 230	265	296	374 402	464 497	532
		9 -10		160	200	245	285 305	318 340	430	530	571 610
	N			16	18	20	25	30	35	40	45
	N			35	40	50	60	65	75	84	100
	Ø			6	7	10	11,5	15	19	24	28
				31	36	48	60	65	82	100	125
	R)		49	64	82	95	106	137		
		6		54	71	89	105	117	150		
		\mathbf{R}_7		59	77	97	115	128	164		
		R ₈		64	84	104	125	139	177	(*)	
	R ₉		69	90	112	135	150	191			
	R	10		74	97	119	145	161	204		
		3		5	5	5	5	5	5	10	10
	S	31		6	6	6	6	6	6	10	10
	٦			11	12	16	20	25	30	40	50
	Υ	1		26	28	32	41	43	49	54	58
	а	l		8,5	10	10	13	15	25	30	35
	t)		6	7	10	10	10	14	20	20

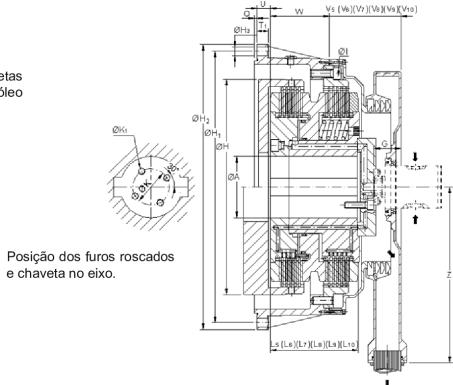
GOTZPER 22


Série 6.25 (Convencional) 6.26 (Progressivo)

Montagem no eixo por meio de buchas de anel de travamento no lado da embreagem e entrada de óleo através do eixo.

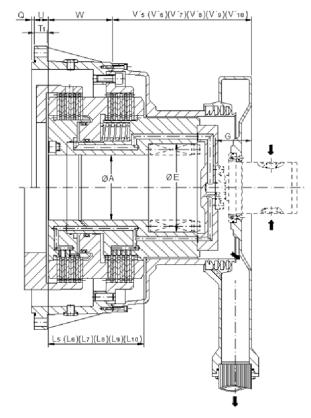
Série 6.27 (Convencional) 6.28 (Progressivo)

Montagem por meio de buchas de anel de travamento no lado da embreagem na extremidade do eixo e entrada de óleo pelo cubo.


UNIDADE DE FREIOS-EMBREAGEM HIDRÁULICOS

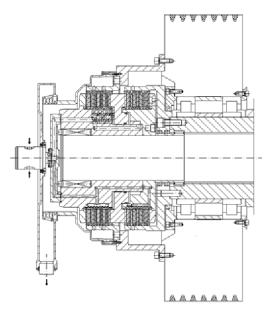
	SÉR	RIE				6.25	6.26 /	6.27 / 6	.28			
TA	MA	NHC		25	75	77	78	81	82	83	84	
			5	2500	6500	12500	25000	50000	100000	200000	328000	
_			6	3000	7800	15000	30000	60000	120000	240000	391000	
Torq ue de		E	7	3500	9100	17500	35000	70000	140000	280000	456000	
embr		Embreagem	8	4000	10400	20000	40000	80000	160000	320000	514000	
eage m	Ф	pre	9	4500	11700	22500	45000	90000	180000	360000	574000	
estáti ca (Nm)	Quantidade de discos de embreagem/freio	Em	10	5000	13000	25000	50000	100000	200000	400000	633000	
(****)	Quantidade de di embreagem/freio		5	1000	2500	5000	10000	20000	40000	80000	120000	
Torque	de c		6	1200	3000	6000	12000	24000	48000	96000	144000	
de freio	idad	Freio	7	1400	3500	7000	14000	28000	56000	112000	168000	
dinâmi	ant Ibre	ш	8	1600	4000	8000	16000	32000	64000	128000	192000	
CO (NIm)	Qu Em		9	1800	4500	9000	18000	36000	72000	144000	216000	
(Nm)			10	2000	5000	10000	20000	40000	80000	160000	240000	
J int.			5/5	0,16	0,58	1,51	3,58	9	33,7	102	252	
(kg m²)		Om	10/10	0,19	0,69	1,96	4,76	12,53	45,2	133	325	
	Peso ((Kg)		40	80	160	295	510	1030	1900	3000	
Velocid	ade má	xima (n	nin ⁻¹)	1700	1300	1000	850	700	500	415	350	
	Pressã	o (bar)					60					
	Ø H7ı	mín		60	80	90	110	150	190			
	Ø H7r	náx		75	95	110	140	180	240			
	ØEH	7 máx.		115	135	155	190	235	305			
	ØF			145	175	220	270	320	430			
	ØF	2		160	200	250	300	380	480			
	L_5			110	135	170	205	230	290			
	L_6			120	148	185	225	252	318			
	L_7			130	161	200	245	274	346			
	L_8			140	174	215	265	296	374		Φ	
	L_9			150	187	230	285	318	402	n	83	
	L ₁₀	ı		160	200	245	305	340	430	E O	sou	
	N			85	85	105	120	150	150	to c	lan	
	ØC)		6	7	10	11,5	15	19	onta	tan 1	
	Р			31	36	48	60	65	82	S	84 84	
	R_5			49	64	82	95	106	137	Entre em contato com a	Goizper para os tamanhos 83 84	
	R_6			54	71	89	105	117	150	ntre	er p	
	R_7			59	77	97	115	128	164	Ш	dzio	
	R_8			64	84	104	125	139	177		<mark></mark>	
	R_9			69	90	112	135	150	191			
	R ₁₀)		74	97	119	145	161	204			
	S			5	5	5	5	5	5			
	Y ₁			30	30	30	39	39	45			
	Y ₂			4	4	4	5	5	5			
	b			6	7	10	10	10	14			
	С			93,5	95	115	133	165	175			
	d			26,5	31	41	52,5	55	70			
	е			9	10	14	15	20	24			

GOIZPER 24 GOIZPER

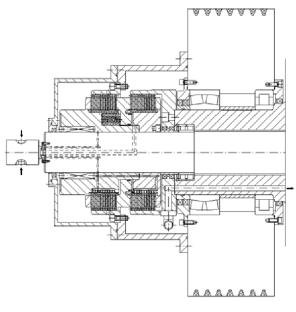

Séries 6.23._ _.910 (Convencional) **6.24._ _.910 (Progressivo)**

Montagem por meio de chavetas na ponta do eixo e entrada de óleo pelo cubo.

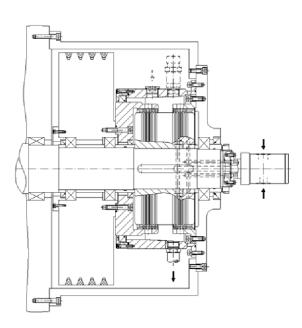
Séries 6.27._ _.910 (Convencional) **6.28._ _.910 (Progressivo)**


Montagem por anel de travamento no lado da embreagem na extremidade do eixo e entrada de óleo pelo cubo.

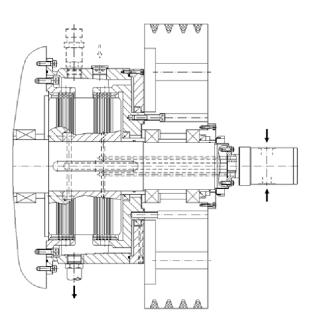
UNIDADE DE FREIOS-EMBREAGEM HIDRÁULICOS


	SÉR	IE			6.2	23 / 6.24 /	6.27 /	6.28	(9 ²	10)		
T/	AMA	NHO		25	75	77	78	81	82	83	84	
			5	2500	6500	12500	25000	50000	100000	200000	328000	
			6	3000	7800	15000	30000	60000	120000	240000	391000	
Torq	embreagem/freio	Ε	7	3500	9100	17500	35000	70000	140000	280000	456000	
ue de embr	m/fr	Embreagem	8	4000	10400	20000	40000	80000	160000	320000	514000	
eage	ge	orea	9	4500	11700	22500	45000	90000	180000	360000	574000	
m estáti	rea	m	10	5000	13000	25000	50000	100000	200000	400000	633000	
ca	ame du	ш		0000	10000	20000	00000	10000	20000	10000	00000	
(Nm)	de e		_	4000							400000	
.) SO		5	1000	2500	5000	10000	20000	40000	80000	120000	
Torque de	discos		6	1200	3000	6000	12000	24000	48000	96000	144000	
freio	de d		7	1400	3500	7000	14000	28000	56000	112000	168000	
dinâmi co	e o		8	1600	4000	8000	16000	32000	64000	128000	192000	
(Nm)	dac		9	1800	4500	9000	18000	36000	72000	144000	216000	
	Quantidade		10	2000	5000	10000	20000	40000	80000	160000	240000	
J int.	Quí	0 _	5/5	0,16	0,58	1,51	3,58	9	33,7	102	252	
(kg m²)			10/10	0,19	0,69	1,96	3,86	12,53	45,2	133	325	
Velocida	ade má	xima (r	nin ⁻¹)	1700	1300	1000	850	700	500	415	350	
F	Pressã	o (bar)				60)					
	Ø H7r	mín		60	80	90	110	150	190			
	Ø H7r	máx		75	95	110	140	180	240			
	ØEm	náx.		115	135	155	190	235	305			
G		52,5	61	57	78	70	67					
	Ø H h ₈			290	360	460	540	655	820			
	ØH	l ₁		320	390	495	580	705	900			
	ØΗ	l ₂		340	410	520	610	740	950			
Ç	Ø H ₃ ('	12x30T	yı .	9	11	13,5	17,5	22	26			
	Ø١			260	330	425	500	630	796		83	
	Øk	(44	55	65	85	95	130			
	K ₁ (4x	90 ™		M8	M8	M10	M12	M16	M20	COD	ınhc	
	L_5			110	135	170	205	230	290	ato	ma	
	L_6			120	148	185	225	252	318	onta	84 84	
	L ₇			130	161	200	245	274	346	Ö H	a e	
	L ₈			140	174	215	265	296	374	e.	pa	
	L_9			150	187	230	285	318	402	Entre em contato com	per	
	L ₁₀)		160	200	245	305	340	430	Ш	Goizper para os tamanhos e 84	
	Q			6	6	6	6	6	6		Ö	
	T ₁			16	18	20	28	30	35			
	U			21	23	25	30	35	40			
	V ₅ V' ₅			121/210	138/255	152/253	181/299	185/331	216/355			
	V ₆ V' ₆			131/220	151/238	167/268	201/319	207/353	230/383			
	V_7V	" 7		141/230	164/251	182/283	221/339	229/375	244/411			
	V ₈ V	' '8		151/240	177/264	197/298	241/359	251/397	258/439			
	$V_9 V$			161/250	190/277	212/313	261/379	273/419	272/467			
	$V_{10}V$	'' 10		171/260	203/290	227/328	281/399	295/441	286/495			
	W			70	82	105	138	153	192			
	Z			225	290	326	406	456	546			
União gi	iratória	padrão	(8) (*)	7.02.0	08.905	7.02.07.905		7.02.07.965	5			

EXEMPLO DE MONTAGEM DE FREIOS-EMBREAGEM HIDRÁULICOS


Série 6.27 / 6.28 (910)

Montagem na extremidade do eixo com disco de entrada de óleo lateral e coletor de óleo dinâmico.

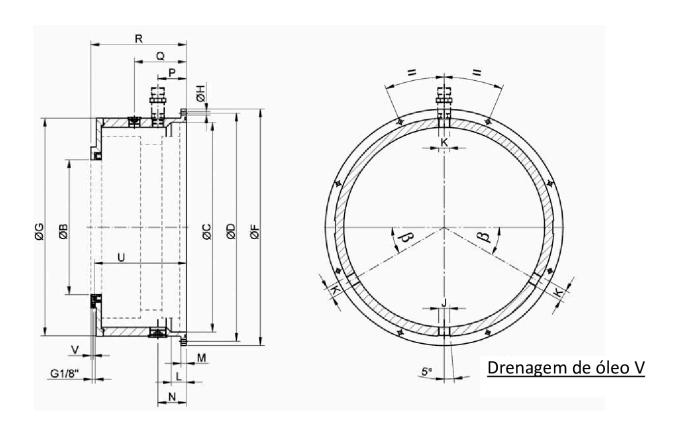

Série 6.25/6.26

Montagem na extremidade do eixo com entrada de óleo através do eixo e coletor de óleo dinâmico.

Série 6.21/6.22

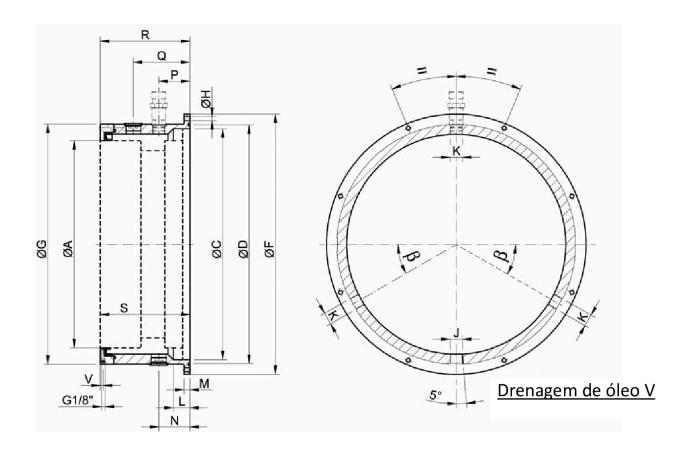
Montagem na extremidade do eixo com entrada de óleo através do eixo e coletor de óleo estático.

Série 6.21/6.22


Montagem entre quadro e volante com entrada de óleo pelo eixo e coletor de óleo estático.

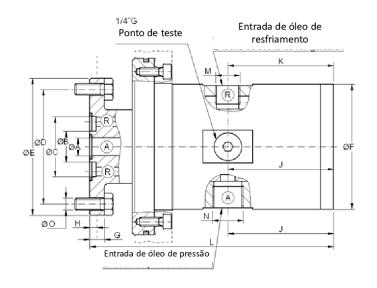
ACESSÓRIOS

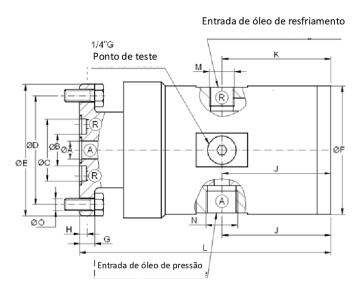
GOIZPER 28


COLETOR DE ÓLEO HIDRÁULICO PARA FREIOS-EMBREAGEM HIDRÁULICOS

SÉRIE		6.2087							
TAMANHO	25	75	77	78	81	82	83	84	
n _{max} (*) min ⁻¹	1190	950	760	560	470	380	315	275	
ØB	160	200	250	340	400	500	600	710	
Ø C H7	260	330	425	500	630	800			
ØD	305	385	480	555	685	865	<u>a</u>		
ØF	325	410	505	580	710	895	r par		
ØG	300	370	461	526	655	820	Goizper para e 84		
ØH	9 (8X45°)	11 (8x45°)	11 (8x45°)	11 (12x30°)	11 (12x30°)	13 (12x30°)		O O	
ØJ	G 3/4 "	G 1"	G 1"	G 11/4 "	G 11/4 "	G 2"	om 6	S S S	
K	G 3/4 "	G 1"	G 1"	G 11/4 "	G 11/4 "	G 2"	ato c	anno a	
R _{min} - R _{max}	118-204,5	143,5-249,5	187,5-303	216-373	241-413	306-512	em contato com a os tamanhos 83		
U_{min} - U_{max}	116-202,5	139,5-245,5	179,5-295	209-367	234-406	295-501			
V	6,5	6,5	6,5	8	8	10	Entre 6		
ß	35°	36°	36°	30°	30°	30°			

^(*) Para velocidade tangencial máxima do retentor de óleo de 10 m/s.


COLETOR DE ÓLEO HIDRÁULICO PARA FREIOS-EMBREAGEM HIDRÁULICOS



SÉRIE				6.20.	88			
TAMANHO	25	75	77	78	81	82	83	84
n _{max} (*) min-1	830	660	500	430	340	275	200	90
Ø A	230	290	380	440	560	710	870	1040
Ø C H7	260	330	425	500	630	800	990	
ØD	305	385	480	555	685	865	1050	
ØF	325	410	505	580	710	895	1100	
ØG	300	370	461	526	655	820	990	com o 84
ØH	9 (8X45°)	11 (8x45°)	11 (8x45°)	11 (12x30°)	11 (12x30°)	13 (12x30°)	13 (12X30 T)	contato com tamanho 84
J	G 3/4 "	G 1"	G 1"	G 11/4 "	G 11/4 "	G 2"	G 2"	cont
K	G 3/4 "	G 1"	G 1"	G 11/4 "	G 11/4 "	G 2"	G 2"	em
$R_{min} - R_{max}$	118-204,5	143,5-249,5	187,5-303	216-373	241-413	306-512	370-540	Entre Goizper p
S _{min} - S _{max}	115-201,5	140-246	180-295,5	205-362	230-402	290-496	350-520	E
V	6,5	6,5	6,5	8	8	10	12	
ß	35°	36°	36°	30°	30°	30°	30°	

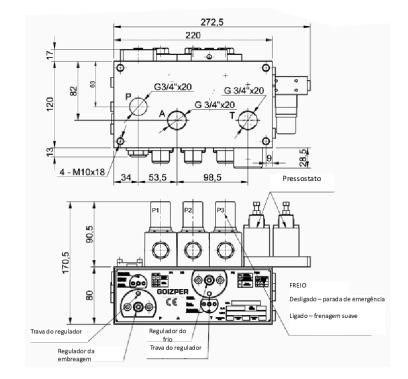
^(*) Para velocidade tangencial máxima do retentor de óleo de 10 m/s.

UNIÕES ROTATIVAS COM 2 ENTRADAS DE ÓLEO

Série 7.02._ _ .9 _5

Série 7.02._ _.9 _ 6

cépus	= 00	0 = (4)			
SÉRIE	7.02	9_5(*)		7.029_	_6
TAMANHO	08	07 (965)	08	07 (916)	07 (946)
Ø A	12	20	12	20	38
Ø B	21	31	21	30	55
ØC	41	59	39	46	78
Ø D	78	78	59	78	120
Ø E g7	93	93	70	93	148
ØF	90	110	90	110	155
G	10	10	10	10	16
Н	5	5	5	5	5
J	67	67	72	67	112,5
K	67	67	72	67	179
L	166	175	166	175	295
M	1/2" G	3/4" G	1/2" G	3/4" G	1" G
N	1/2" G	3/4" G	1/2" G	3/4" G	1" G
ØO	M8-4x90°	M8-4x90°	M8-4x90°	M8-4x90°	M10-6x60°
Ângulo entre N e M	180°	180°	180°	180°	0°
SÉRIE HIDRÁULICA C-B	6.23 / 6.24 / (910)	6.27 / 6.28	6.21 / 6.22 / 6.28	6.23 / 6.24 / 6.25	5 / 6.26 / 6.27 /
Tamanhos	25/75	77/78/81/82	25/75	77/78/81/82	83/84


Entre em contato com a GOIZPER para outras opções:

- Conexões com o eixo.
- Tipos de conexão de tubulação.
- Uniões giratórias com 1 e 3 entradas.
- União giratória adaptada para encoder ou tacômetro.

(*) Entre em contato com a GOIZPER para obter união rotativa para os tamanhos 83 e 84.

VÁLVULAS DE CONTROLE PARA EMBREAGEM E FREIO PROGRESSIVOS (6.20.00.9_8)

A válvula de segurança de prensa para embreagem e frenagem progressivas (3EV) é usada para controlar os freios e embreagem combinados acionados hidraulicamente.


Para uma embreagem e frenagem suaves, dois reguladores de ajuste estão localizados no painel frontal. As eletroválvulas P1 e P2 são para engate da embreagem e a P3 é para selecionar a frenagem suave (ON) ou de emergência (OFF).

Os carretéis da válvula que acionam a unidade de embreagem-freio devem ser redundantes para garantir o cumprimento dos requisitos da regulamentação de segurança. Isso significa que ambos os carretéis precisam ser acionados para fazer a máquina funcionar, enquanto apenas um carretel é suficiente para pará-la. Por outro lado, deve-se verificar se ambos os carretéis estão na posição inicial antes de cada ciclo. (Autocontrole externo).

(*) Os furos de conexão P/A/T padrão são de 3/4" G (x) (BSP).

GOIZPER 32 _______ GOIZPER 33

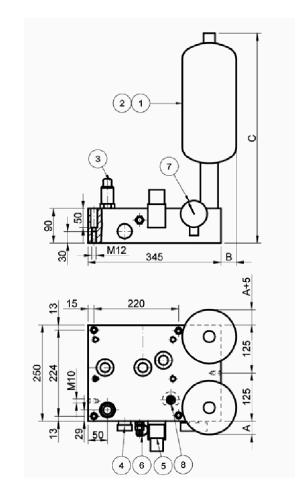
VÁLVULAS DE CONTROLE CONVENCIONAIS (6.20.00.9_1)

A válvula de segurança da prensa (2EV) é usada principalmente para controlar freios-embreagens combinados convencionais acionados hidraulicamente.

As eletroválvulas P1 e P2 devem ser ligadas simultaneamente para engatar a embreagem.

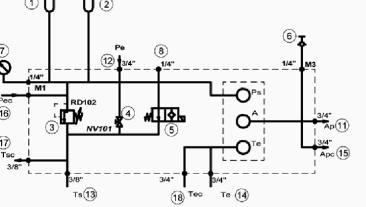
Os carretéis da válvula que acionam a unidade de freio-embreagem devem ser redundantes para garantir o cumprimento dos requisitos da regulamentação de segurança. Isso significa que ambos os carretéis precisam ser acionados para fazer a máquina funcionar, enquanto apenas um carretel é suficiente para pará-la. Por outro lado, deve-se verificar se ambos os carretéis estão na posição inicial antes de cada ciclo. (Autocontrole externo).

(*) Os furos de conexão P padrão são de 1/2" G (x) (BSP), enquanto os A/T são de 3/4" G (x) (BSP).

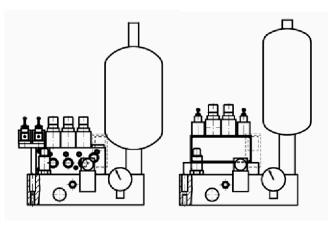

UNIDADES DE CONTROLE HIDRÁULICO SÉRIE 6.75

As unidades de controle são projetadas para montar válvulas de segurança GOIZPER em sua base e incluem acumuladores com unidade de segurança correspondente, conexões e pontos de medição.

N	DENOMINAÇÃO
1-2	Acumuladores
3	Limitador de pressão
4	Válvula de corte para tanque
5	Eletroválvula
6	Ponto de pressão
7	Manômetro
8	Conexão para pressostato
11 Ap	Para aplicação (inferior)
12 Pe	Entrada de pressão da bomba (inferior)
13 Ts	Para o tanque (acum.) (Inferior)
14 Te	Para o tanque (válvula de controle) (Inferior)
15 Apc	Para aplicação (lateral)
16 Pec	Entrada de pressão da bomba (lateral)
17 Tsc	Para o tanque (acum.) (Lateral)
18 Tec	Para o tanque (válvula de controle) (Lateral)

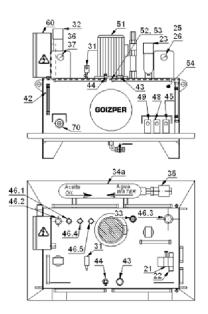

TAMANHO (*)	03	04	05	08	12
Acum. Volume (I.)	2,8	4	5,6 (2x2,8)	8 (2x4)	12 (2x6)
A	48,5	51,5	48,5	51,5	51,5
В	53,5	56,5	53,5	56,5	56,5
C	380	518	380	521	651

Circuito hidráulico

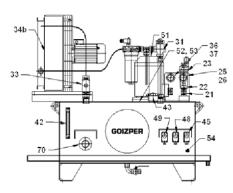


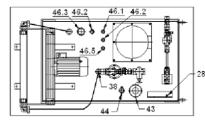
CONJUNTOS COM UNIDADE DE CONTROLE

1 (2) 7 ®Õ (16)


(*) Tamanhos maiores consulte a GOIZPER.

GOTZPER 34


UNIDADES DE ALIMENTAÇÃO


UNIDADES DE ALIMENTAÇÃO DA SÉRIE 6.70 COM TROCADOR DE CALOR ÁGUA/ÓLEO

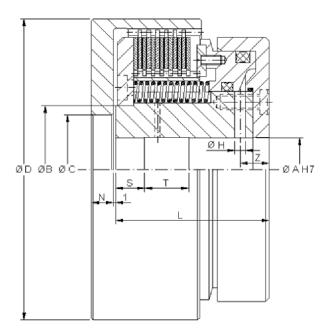
LIMITADOR DE PRESSÃO (CIRCUITO DE PRESSÃO) ELETROVÁLVULA FILTRO (CIRCUITO DE PRESSÃO) MANÔMETRO (CIRCUITO DE BOTÃO DE PRESSÃO DO MANÔMETRO (CIR. DE PRESSÃO) PONTO DE TESTE DE PRESSÃO (CIRCUITO DE PRESSÃO) TROCADOR LIMITADOR DE PRESSÃO 31 (CIRCUITO DE REFRIGERAÇÃO) FILTRO (UNIDDE DE REFRIGERAÇÃO) REGULADOR DO FLUXO DE ÓLEO TROCADOR DE CALOR 34_a ÓLEO/ÁGUA TROCADOR DE CALOR ÓLEO/AR 34_b VÁLVULA SOLENÓIDE 2/2 VIAS MANÔMETRO (CIRCUITO DE REFRIGERAÇÃO)

UNIDADES DE ALIMENTAÇÃO DA SÉRIE 6.71 COM TROCADOR DE CALOR ÓLEO/AR

N°	DENOMINAÇÃO
	BOTÃO DE PRESSÃO DO
37	MANÔMETRO (CIRCUITO DE
	REFRIGERAÇÃO
00	PONTO DE TESTE DE PRESSÃO
38	(CIRCUITO DE REFRIGERAÇÃO)
40	INDICADOR VISUAL DE
42	NÍVEL DE ÓLEO
43	TORNEIRA DE ENCHIMENTO
44	INTERRUPTOR DE NÍVEL DE ÓLEO
45	TERMOSTATO
	CONEXÕES DE
46	RETORNO DE ÓLEO
	TERMOSTATO PARA CONTROLAR
48	TROCADOR DE CALOR
	TERMOSTATO PARA CONTROLE
49	DE AQUECEDOR
51	MOTOR
	BOMBA DE ÓLEO DE REFRIGERAÇÃO
52	
	BOMBA DE ÓLEO DE PRESSÃO
53	
54	TANQUE
	CAIXA DE TERMINAIS
60	(opcional "-B")
70	AQUECEDOR (opcional
70	"-R")

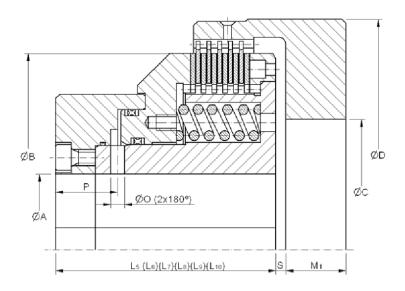
	UN	IIDADES DE ALIMENTAÇÃO PADRÃO	O GOIZPER	
TIPO DE TROCADOR DE CALOR VAZÃO DE ÁGUA (L/MIN)		(KW) (T = 30°C) ▲		N.° DO CÓDIGO
	20	12	250	67025912
	40	20	400	67040920
41. 11	66	30	400	67040930
Óleo/água	66	40	400	67040936
	95	50	400	67040901
	95	62	400	67040902
	95	80	600	67060980
	95	105	800	670809105
	180	130	800	670809130
		12	250	67125912
Óleo		20	400	67140920
Aceite	/aire	32	400	67140932(*)
		40	400	67140940(*)

(*) O refrigerador de ar não está instalado no conjunto de energia.


GOTZPER 36

FREIOS-EMBREAGEM HIDRÁULICOS

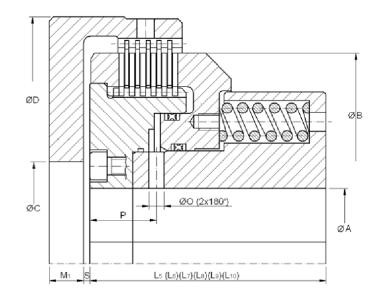
Série 6.11


EMBREAGENS HIDRÁULICAS

SÉRIE		6,32							
TAMANH	0	11	16	23	45	90	18	81	
Torque	Nm	110	160	230	450	900	2000	6200	
Pressão de operação Contrapressão	bar	18 1,5	18 1,5	18 1,5	24 2,5	24 2,5	20 4,7	25 3,8	
Velocidade máx.	min-1	3500	3500	3500	3000	2500	3000	3000	
Peso	Kg	3	4,5	6,5	9	13	23	24	
Inter	I/a ana	20	42	94	240	300	521	622	
. J Exter.	Kg cm ²	11	20	46	100	230	467	467	
Novo. Volume	cm ³	10	15	20	31	40	66	82	
Volum. desg. máx.	CITIE	20	28	40	47	60	132	163	
Ø A	Min	20	25	25	30	40	40	40	
ØA	Max	30	40	42	50	58	76	76	
Ø		40	50	52	62	70	84,2	84,2	
В	Min.	45	55	60	70	75	80	80	
Ø C Ø D			113	133	145	165	200	200	
ØH		4	5	5	6	6	7	7	
L	L		62	65	75	84	108	108	
N	N		9	9	10	12	20	20	
S		10	12	15	14	16	27	27	
Т		13	14	15	22	24	15	15	
Z		12	12,5	13,5	15	16	16	18	

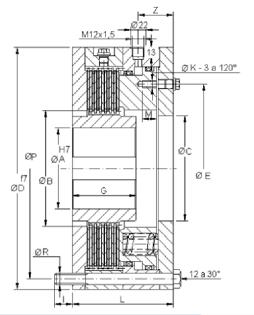
^(*) Esses dados são para funcionamento úmido, em caso de funcionamento a seco, consulte a GOIZPER.

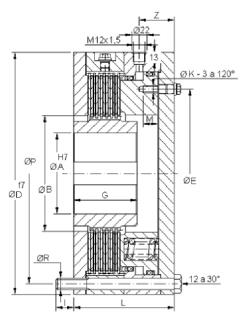
EMBREAGENS HIDRÁULICAS



	SÉRIE					6,	11				
TA	MANH	0	25	75	77	78	81	82	83	84	
Estático Embreag em Torque (Nm)(*)	Φ	5	2500	6500	12500	25000	50000	100000	200000	328000	
		6	3000	7800	15000	30000	60000	120000	240000	391000	
	ade de	7	3500	9100	17500	35000	70000	140000	280000	456000	
	ntid os	8	4000	10400	20000	40000	80000	160000	320000	514000	
(Nm)(*)	Quantic	9	4500	11700	22500	45000	90000	180000	360000	574000	
		10	5000	13000	25000	50000	100000	200000	400000	633000	
J int.		5	0,09	0.372	1.948	2.501	5.932	24,29	66,86	172	
(kg m2)		10	0.105	0.427	1.173	3.091	7.562	30,04	82,16	207	
	Peso (Kg)		40	80	160	295	510	1030	1900	3350	
Velocio	Velocidade máxima (min-1)		1700	1300	1000	850	700	500	415	350	
Press	Pressão operacional (bar)			40							
Co	ntrapressão	(bar)	4								
	Ø H7min		58	70	80	105	120	160	180	220	
	Ø H7max		75	95	115	150	180	250	310	375	
	ØB		196	260	320	390	490	630	778	930	
Q	Ø C H7min.		80	100	120	155	185	255	315	380	
	ØD		230	290	380	440	560	710	870	1040	
	L ₅		110	135	170	205	230	290	365	416	
	L ₆		115	141,5	177,5	215	241	304	381,5	435,5	
	L ₇		120	148	185	225	252	318	398	455	
	L ₈		125	154,5	192,5	235	263	332	414,5	474,5	
	L ₉		130	161	200	245	274	346	431	494	
L ₁₀		135	167,5	207,5	255	285	360	447,5	513,5		
M_1		35	40	50	60	65	75	84	100		
	ØO		6	7	10	11,5	15	19	24	28	
	Р		31	36	48	60	65	82	100	125	
	S		5	5	5	5	5	5	10	10	

^(*) Esses dados são para funcionamento em piso molhado, em caso de funcionamento em piso seco consulte a GOIZPER.


GOTZPER 38


FREIOS HIDRÁULICOS DE SEGURANÇA

SÉRIE						6,	12			
TA	MANH	0	25	75	77	78	81	82	83	84
	SO	5	1000	2500	5000	10000	20000	40000	80000	120000
	disc	6	1200	3000	6000	12000	24000	48000	96000	144000
Dinâmico Embreag em	Quantidade de discos	7	1400	3500	7000	14000	28000	56000	112000	168000
Torque	tid	8	1600	4000	8000	16000	32000	64000	128000	192000
(Nm)(*)	nar	9	1800	4500	9000	18000	36000	72000	144000	216000
	Ø	10	2000	5000	10000	20000	40000	80000	160000	240000
J int.		5	0,09	0.372	0.948	2.501	5.832	24,29	66,86	172
(kg m2)		10	0.105	0.427	1.173	3.091	7.562	30,04	82,16	207
	Peso (Kg)		40	80	160	295	510	1030	1900	3350
Velocida	de máxima	(min^{-1})	1700	1300	1000	850	700	500	415	350
Press	Pressão operacional (bar)		40							
Cor	ntrapressão	(bar)	24							
	Ø H7min		58	70	80	105	120	160	180	220
	Ø H7max		75	95	115	150	180	250	310	375
	ØB		196	260	320	390	490	630	778	930
Q	Ø C H7min.		80	100	120	155	185	255	315	380
	ØD		230	290	380	440	560	710	870	1040
	L ₅		110	135	170	205	230	290	365	416
	L ₆		115	141,5	177,5	215	241	304	381,5	435,5
	L ₇		120	148	185	225	252	318	398	455
	L ₈		125	154,5	192,5	235	263	332	414,5	474,5
	L ₉		130	161	200	245	274	346	431	494
	L ₁₀		135	167,5	207,5	255	285	360	447,5	513,5
M_1		35	40	50	60	65	75	84	100	
	ØO		6	7	10	11,5	15	19	24	28
	Р		31	36	48	60	65	82	100	125
	S		5	5	5	5	5	5	10	10

FREIOS HIDRÁULICOS DE SEGURANÇA

T T											
SÉRIE				6.42 - 6.42 B							
TAMANHO			16	23	45	63	90	40	77		
	Seco	Estático		415	610	900	1235	2040	15290	17770	
Torque		Dinâmico	Nlm	300	440	655	900	1485	11140	12940	
	Úmido	Estático	Nm	260	375	560	765	1260	9460	10990	
		Dinâmico		200	295	440	600	990	7425	8625	
Pres.				18	18	24	24	24	45	35	
deseng. oper.		bar		300	300	300	300	300	300	300	
Veloc máx.	idade	min ⁻¹		3500	3500	3000	3000	2500	1250	1100	
Pes	Peso Kg		9	11	15	18	21	101	140		
J int. Kg.cm ²		7	13	38	58	95	1150	3800			
Ø A min.		20	25	30	30	35	60	80			
Ø A max.		40	45	55	60	65	115	150			
ØB			62	77	89	102	111	167	225		
	Ø	С		53	65	75	80	90	130	205	
	Ø	D		135	150	165	180	200	345	400	
	Ø	Е		66	79	90	102	128	240	290	
	(à		45	50	55	55	60	72	110	
ØK		M6	M6	M6	M6	M8	M10	M12			
1		15	15	20	20	20	20	25			
L		81	86	90	95	100	170	165			
M		15	15	15	15	20	20,5	25			
	Ø	Р		115	130	145	160	180	315	370	
	Ø	R		M8	M8	M10	M10	M10	M16	M16	
	_	7_		29	29	33	34	33	53	53	

^(*) Esses dados são para funcionamento úmido, em caso de funcionamento a seco, consulte a GOIZPER.

^(*) Consulte a GOIZPER sobre tamanhos maiores.

QUESTIONÁRIO PARA PRENSA

		9	ь.		
u	Д	١І	и	Δ	١.

GOIZPER	Formulário de dados para seleção de unidade FE
CLIENTE Responsável	Depto.:
Telefone	E-mail:
	ipo
Montagem FE: Extre Entre	o quadro e o volante
Tipo de unidade FE necessária:	Acionado pneumaticamente: Acionado hidraulicamente:
	DADOS TÉCNICOS DA PRENSA
Força máx. de pressão. Raio do virabrequim	r =mm B.D.C
3. Comprimento da haste latera	L =mm p.m.i.
	B.D.C. <u>Q</u> =o etivo h =mm s =mm
	abrequim $n_c = \frac{min-1}{s}$
7. Momento de inércia de todas excluída) J_m =	as massas a serem freadas, reduzidas ao eixo cl-br (inércia EMBR-FR
	e da válvula t _r =sg
9. Número de engates por minut	to na velocidade máxima, trabalhando em um único curso. min ⁻¹
	VALORES DE FRENAGEM
	necessário no virabrequim (atraso do relé e válvula incl.)
	renagem necessário (atraso do relé e da válvula t _f =sg
,	
	α
	α

QUESTIONÁRIO PARA APLICAÇÕES EM GERAL

AC	TA	A	

GOIZPER	Formulário de c	dados para seleção de unidade	CL-BR
Responsável		Depto.:	
Telefone	E-mail:		
Tipo de unidade FE necessária Pneumáti Eletroma	co:	Hidráulico: Mecânico:	
Tipo de máquina: Máquina de acioname Tipo:	ento:		
	Motor elétrico: Motor de combustão: Motor hidráulico: Outro:		
Velocidad	P= le: n=	Kw	
Montagem: Eixo rotativo: Horizonta	ıl: Vert	tical:	
Situação de FE: Exposto: Diâmetro do eixo: Lado de a Lado acio		mm.	
Torque necessário em embrea Torque dinâmico de Torque estático tran	gens ou freios: acionamento: smissível:	Ms= Mt =	Nm
Velocidade inicial ac	Carga completa:	min ⁻¹ Velocidade máx.: n _{max} =]
Momentos de inércia reduzido: Lado de acionamento Lado de acionamento	s para EMBR-FR: b: J _A = b: J _L =	kgm² kgm²	
Tempos: Tempo de frenagem: Tempo de embreage		s	
Frequência de operação: N=		min ⁻¹	

GOIZPER 43 ______ GOIZPER 43

GOIZPER

GRUPO GOIZPER Antigua, 4 20577 Antzuola Gipuzkoa - Espanha

Tel.: + 34 943 78 60 00 goizper@goizper.com

- GOIZPER FRANÇA Espace d'Activités Becquerel 15, Avenue Henri Becquerel 51000 Châlons en Champagne França
- Tel: + 33 (0)3 26 21 08 39 goizperfrance@goizper.com
- GOIZPER GmbH Bevertalstr. 20 42499 Hückeswagen Alemanha
- Tel.: +49 (0) 2192 935 99 03 goizperdeutschland@goizper.com goizperchina@goizper.com
- GOIZPER TRANSMISSION MACHINERY (WUXI) CO., LTD.
- No. 3 Workshop, Fengneng Road, Wind Power Science & Technology Industrial
- Huishan Economic Development Zone, 214174 Wuxi, Jiangsu - China

Tel.: +86 186 217 020 36

www.goizper.com